

Robust Efficacy Signals in elderly AML Patients treated with ladademstat in Combination with Azacitidine (ALICE Phase IIa Trial)

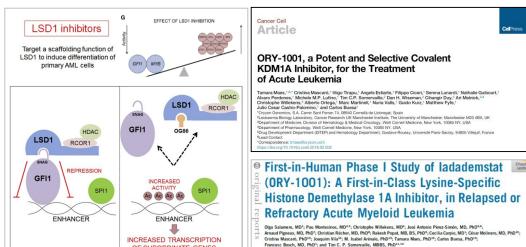
Olga Salamero¹, Tim Somervaille², Antonieta Molero¹, Evelyn Acuña³, Marta Villalba¹, Isabel Cano³, Rebeca Rodriguez-Veira³, Sonia Gutiérrez⁴, Roger Bullock⁴, Carlos Buesa⁴, Francesc Bosch¹, Pau Montesinos³

1. Servei d'Hematologia, Vall d'Hebron Hospital Universitari, Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Spain. 2. Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom; 3. Hospital Universitario La Fe, Valencia, Spain. 4. Oryzon Genomics S.A., Cornellà de Llobregat, Spain

Disclosure

Dr. Olga SalameroHematologist at the Hospital Vall d'Hebron and
Researcher at the Experimental Hematology Group of

the Vall d'Hebron Institute of Oncology (VHIO)


OS: honoraria from Celgene, Novartis, Daichii Sankyo and Jazz Pharmaceuticals; consulting or advisory role from Celgene, Novartis, Pfizer and Jazz Pharmaceuticals; and travel, accommodations or expenses from Celgene, Novartis and Daiichi Sankyo. **TS**: consultancy and honoraria from Novartis; research funding from Imago Bioscience. **AM**: honoraria from Abbvie and Jansen; and Travel, Accommodations, Expenses from Celgene; **FB**: honoraria from Roche, Celgene, Takeda, Astra-Zeneca, Novartis, AbbVie and Janssen. **SG**, **RB**, and **CB** are employees of Oryzon Genomics S.A. **CB** is the Chief Executive Officer and holds equity of Oryzon Genomics S.A. Oryzon Genomics S.A. sponsors the ALICE clinical trial.

ladademstat in AML

- LSD1 is a key effector of the differentiation block in MLI leukemia
- LSD1i disrupt the interaction of LSD1 and transcription repressor GFI1, which is bound to a discrete set of enhancers located close to transcription factor genes that regulate myeloid differentiation

ladademstat has demonstrated

- Highly active and selective LSD1 inhibition
- Safe and well tolerated in monotherapy
- Side effects mostly confined to the hematological compartment as predicted by the MoA
- Strong differentiating activity, especially in MLLr
- ✓ Signs of clinical activity as single agent in patient population (R/R all-in)

OF SUBORDINATE GENES

ALICE Design and Demographics

A Phase IIa study to evaluate the safety, tolerability, dose finding and efficacy of iadademstat (ORY-1001) in combination with azacitidine in elderly unfit patients with previously untreated AML

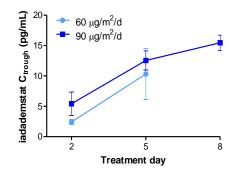
- Single arm & Open label. Up to 36 patients to be enrolled.
- 5 active sites in Spain.
- Primary endpoint: Safety and tolerability of the combination with hypomethylating agent, azacitidine.
- Secondary endpoints: Responses; time to response; duration of response and overall survival.
- Main Inclusion criteria:
 - Subjects with AML according to WHO classification, considered ineligible for intensive chemotherapy or who have refused it.
 - Subjects may not have received azacitidine or prior treatment for AML other than hydroxyurea.

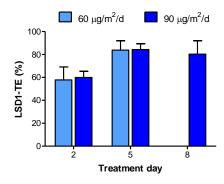
Demographic data					
nº of patients		19			
Sex	Male	9 (47.4 %)			
	Female	10 (54.6 %)			
Age	Mean	76			
	(Min/Max)	(70/83)			
Race	Caucasian	14 (100%)			
Weight	Mean (kg)	71.5			
	(Min/Max)	(54.5/104)			
Height	Mean (cm)	160.3			
	(Min/Max)	(150/175)			
вмі	Mean	27.9			
	(Min/Max)	(20/36.1)			

AML Diagnose					
WHO (n=19)					
AML not otherwise categorized	11 (57.9 %)				
AML and MDS, therapy-related	6 (31.6 %)				
AML with recurrent genetic abnormalities	2 (10.5 %)				
FAB (n=15)					
M0 (myeloblastic, minimally differentiated)	3 (20 %)				
M1 (myeloblastic, minimal maturation)	3 (20 %)				
M2 (myeloblastic, with granulocytic maturation)	5 (33.3 %)				
M4 (acutemyelomonocytic leukemia)	3 (20 %)				
M5a (monoblastic)	1 (6.7 %)				

Preliminary Safety Results

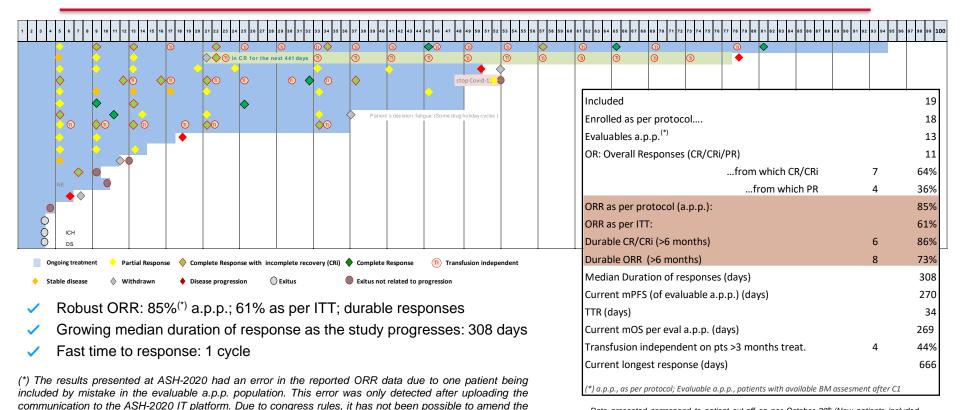
Besides the expected hematological impact, the iadademstat-azacitidine combination appears to be safe and well tolerated


- 247 AEs affecting all patients were reported as related to the study drugs (ARs), azacitidine or iadademstat
 - Most of them were related to the hematological compartment, mainly neutropenia and thrombocytopenia
 - Only 3 Grade 3-4 adverse reactions were observed in two patients not related with the hematological compartment (asthenia, dysgeusia and weight reduction)
- Among the 41 serious adverse events reported, only 2 were considered as related to iadademstat (differentiation syndrome and a fatal ICH).
- Seven deaths have been reported, 5 of them before first bone marrow assessment.


System Organ Class	Number of patients (%) Event count				
2 (17	Adverse events	Adverse reactions	Serious Adverse	Serious Adverse	
Preferred Term	(AEs)	(ARs)	events (SAEs)	reactions (SARs)	
Investigations	17 (89.5) 228	16 (84.2) 151	2 (10.5) 2	0 (0.0) 0	
Platelet count decreased	14 (73.7) 102	13 (68.4) 78	0 (0.0) 0	0 (0.0) 0	
Neutrophil count decreased	13 (68.4) 95	12 (63.2) 70	0 (0.0) 0	0 (0.0) 0	
Other	14 (73.7) 31	3 (15.8) 3	2 (10.5) 2	0 (0.0) 0	
Gastrointestinal disorders	17 (89.5) 61	10 (52.6) 19	1 (5.3) 1	0 (0.0) 0	
Constipation	12 (63.2) 27	6 (31.6) 10	0 (0.0) 0	0 (0.0) 0	
Nausea	6 (31.6) 9	3 (15.8) 5	1 (5.3) 1	0 (0.0) 0	
Other	10 (52.6) 25	3 (15.8) 4	0 (0.0) 0	0 (0.0) 0	
General disorders and administration conditions	16 (84.2) 47	6 (31.6) 11	5 (26.3) 5	0 (0.0) 0	
Asthenia	11 (57.9) 23	5 (26.3) 10	0 (0.0) 0	0 (0.0) 0	
Pyrexia	8 (42.1) 11	1 (5.3) 1	3 (15.8) 3	0 (0.0) 0	
Others	7 (36.8) 13	0 (0.0) 0	2 (10.5) 2	0 (0.0) 0	
Blood and lymphatic system disorders	16 (84.2) 117	7 (36.8) 41	6 (31.6) 7	0 (0.0) 0	
Anaemia	13 (68.4) 101	6 (31.6) 40	0 (0.0) 0	0 (0.0) 0	
Febrile neutropenia	8 (42.1) 9	0 (0.0) 0	6 (31.6) 7	0 (0.0) 0	
Other	5 (26.3) 7	1 (5.3) 1	0 (0.0) 0	0 (0.0) 0	
Metabolism and nutrition disorders	15 (78.9) 53	4 (21.1) 7	0 (0.0) 0	0 (0.0) 0	
Hypoalbuminaemia	7 (36.8) 7	0 (0.0) 0	0 (0.0) 0	0 (0.0) 0	
Hyperglycaemia	5 (26.3) 6	0 (0.0) 0	0 (0.0) 0	0 (0.0) 0	
Other	11 (57.9) 40	4 (21.1) 7	0 (0.0) 0	0 (0.0) 0	
Infections and infestations	13 (68.4) 29	0 (0.0) 0	12 (63.2) 17	0 (0.0) 0	
Respiratory tract infection	3 (15.8) 3	0 (0.0) 0	1 (5.3) 1	0 (0.0) 0	
Pneumonia	3 (15.8) 3	0 (0.0) 0	3 (15.8) 3	0 (0.0) 0	
Other	12 (63.2) 23	0 (0.0) 0	11 (57.9) 13	0 (0.0) 0	
Nervous system disorders	13 (68.4) 22	7 (36.8) 11	3 (15.8) 3	1 (5.3) 1	
Dysgeusia	8 (42.1) 12	6 (31.6) 10	0 (0.0) 0	0 (0.0) 0	
Haemorrage intracranial	2 (10.5) 2	1 (5.3) 1	2 (10.5) 2	1 (5.3) 1	
Other	5 (26.3) 8	0 (0.0) 0	1 (5.3) 1	0 (0.0) 0	
Skin and subcutaneous tissue disorders	10 (52.6) 13	3 (15.8) 4	0 (0.0) 0	0 (0.0) 0	
Rash	3 (15.8) 4	2 (10.5) 3	0 (0.0) 0	0 (0.0) 0	
Other	9 (47.4) 9	1 (5.3) 1	0 (0.0) 0	0 (0.0) 0	
Other	12 (63.2) 36	2 (10.5) 3	5 (26.3) 6	1 (5.3) 1	
Differentiation syndrome	1 (5.3) 1	1 (5.3) 1	1 (5.3) 1	1 (5.3) 1	
Other	11 (57.9) 35	1 (5.3) 2	4 (21.1) 5	0 (0.0) 0	

A patient with more than one finding in the specific category Preferred Term or System Organ Class was only counted once

Preliminary Pharmacodynamic data


- PK levels revealed similar Ctrough for 90 and 60 μg/sqm/d doses
- ✓ PBMC LSD1 Target engagement in leukemia patients is equivalent at both doses
- In the light of the above data and aiming for a better safety and tolerability, the dose of 60 μg/sqm/d was selected as the preferred dose in this patient population

The results obtained so far suggest that the therapeutic efficacy between the two doses is equivalent, with current ORRs of 85% at 90 μg/sqm/d and 83% at 60 μg/sqm/d

Preliminary Efficacy Results

Data presented correspond to patient cut-off as per October 30th (New patients included after cut-off not shown). Patient follow up as per November 18th

communication after submission.

Conclusions

- Data to-date support that iadademstat has a good safety profile compared with reported data of other anti-leukemic agents
- Toxicity appears to be predictable, manageable and restricted only to those hematologic events expected by the mechanism of action
- With historical response rates of 27% in AML patients receiving AZA monotherapy, the current results are supportive of a significant synergistic effect for its combination with iadademstat
- With different MoA compared to pro-apoptotic BCL2 inhibitors, iadademstat combinations may be an additional therapeutic option for first line and also an alternative for rescue treatment in refractory or intolerant patients treated with venetoclax in first line
- ALICE is still recruiting patients and if the current responses are confirmed, these
 data warrant further trials with combination therapy with iadademstat